Y

711

Ivanov Polacek

tRNA-DERIVED RNAs

Methods in ENZYMOLOGY

Volume 711 tRNA-derived RNAs

Edited by

Pavel Ivanov and Norbert Polacek

Serial Editors Anna Marie Pyle, Yale University, USA David W. Christianson, University of Pennsylvania, USA

VOLUME SEVEN HUNDRED AND ELEVEN

Methods in ENZYMOLOGY

TRNA-derived RNAs

Edited by

PAVEL IVANOV

Division of Rheumatology, Inflammation and Immunity, Brigham and Women's, Hospital; Department of Medicine, Harvard Medical School, Boston, MA, United States

NORBERT POLACEK

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland

Preface

In the 1950s, transfer RNAs (tRNAs) have emerged as a central class of RNA molecules playing key roles in protein synthesis. tRNAs are best known as adaptor molecules helping to decode the genetic information of mRNA triplet codons by the ribosome and delivering amino acids to the extending polypeptide chain during mRNA translation. Historically, tRNAs were among the first recognized noncoding RNA (ncRNA) playing fundamental roles in RNA metabolism. Although mainly recognized for their role in protein biosynthesis, tRNAs have also emerged on the stage of RNA biology in the last ~15 years as a rich source for small ncRNA processing products, named tRNA-derived RNAs (tDRs).

In the 1970s, tRNA breakdown products were detected in urine and serum of cancer patients. These fragments were considered as simple degradation byproducts with no biological function that are formed naturally during the tRNA lifecycle, and were considered valuable cancer biomarkers. Fortunately, with the availability of high-throughput RNA sequencing approaches, tDRs were frequently detected in small ncRNA sequencing projects focused on e.g. microRNA profiling. It became clear that tDRs are produced from both precursor and mature tRNAs by enzyme-mediated cleavage at specific sites of the RNA molecules, mainly in the loop regions. Consequently, tDRs can be further classified into more narrow subcategories based on the cleavage sites that produce tDR molecules containing either the 5', the 3', or internal regions of pre-tRNAs/tRNAs. Due to dedicated research in various model organisms spanning all three domains of life, it was demonstrated that some of the identified tDRs possess physiological, mainly regulatory, functions and can thus be considered genuine ncRNA riboregulators. What is intriguing is that all these heterogeneous tDRs are implicated in various biological processes, and the list of their potential functions and their modes of action continued to grow in the past years. Even more importantly, connections between human disease and tDR (mis) regulation have emerged, which warrants further studies of the molecular mechanisms underlying tDR functions and their potential therapeutic use. Thus it can be concluded that a growing fraction of the initially considered meaningless tRNA-derived fragments possess physiological roles in cell biology, likely in all kingdoms of life.

The research on tDRs is still in its infancy. There are obvious gaps in our understanding about biogenesis of tDRs, the interacting proteins, and their biological functions in different domains of life. The understanding that tDR production is tightly regulated and is conserved throughout evolution has triggered multiple laboratories worldwide to uncover their functional roles in cellular physiology. In turn, such interest has created a strong demand in developing experimental tools and novel approaches to study their biogenesis, chemical composition, structure and dynamics, interaction with proteins, and biological functions. In this volume of *Methods in Enzymology*, we assembled 21 chapters that cover a broad range of experimental concepts and biocomputational tools for gaining insight into the multifaceted biology of tDRs in bacteria, mitochondria, plants, single cellular eukaryotes, and mammalian cells. These chapters describe in details essential tools and methods to characterize and investigate this versatile class of ncRNA molecules.

We are thankful for the phenomenal positive responses from the contributors of this volume whose strict adherence to the deadlines and the uniformly high quality of the submitted material allowed us to edit this book series in an adequate timeframe. We also thank Elsevier's editorial and production stuff for the help in the preparation of this volume. We hope that this volume will stimulate future studies on the manifold roles of tDRs in different biological contexts, as it did for both of us.

Contents

		butors	xvii
Pre	efac	e .	xxiii
1.		urification of endogenous tDRs by hybridization-based pulldown Ishika Takenaka, Nana Kunii, and Yasutoshi Akiyama	1
	1.	Introduction	1
	2.	General methods	3
		2.1 Equipment	3
		2.2 Reagents and buffers	3
		2.3 Protocol	5
		Concluding remarks	12
	Ret	ferences	13
2.	No	orthern blotting for human pre-tRNA and tRNA-derived RNAs	15
	Yo	oshika Takenaka, Katsuki Aoyama, and Yasutoshi Akiyama	
	1.	Introduction	15
	2.	General methods	17
		2.1 Equipment	17
		2.2 Reagents and buffers	18
		2.3 Protocol	19
		2.4 Interpretation of the results	24
		Concluding remarks	25
	Ret	ferences	26
3.		general framework to analyze potential roles of tDRs in ammalian protein synthesis	29
	Nu	upur Bhatter and Pavel Ivanov	
	1.	Introduction	30
		1.1 Biogenesis of tDRs and proposed roles in translational control	30
		1.2 Simplified overview of eukaryotic mRNA translation	31
	2.	Materials	33
		2.1 General equipment	33
		2.2 Reagents and buffers	33
		2.3 Oligonucleotides used in the study	34

	Assays to study the mechanisms of 5'-tiRNA ^{Ala} -mediated translation inhibition	34
	3.1 <i>In vitro</i> translation assay of reporter mRNA in RRL	34
	3.2 <i>In vitro</i> translation assay of reporter mRNAs in cell-free HEK293	35
	extracts	
	3.3 m ⁷ GTP cap sepharose pull down	38
	3.4 Assessing elF2a phosphorylation levels	39
	3.5 Ability of 5'tiRNA ^{Ala} to induce stress granules upon transfection	4(
4.	Conclusions	42
Ac	knowledgments	44
Re	ferences	44
tR	NA-derived RNAs that form tetramolecular assemblies	47
Pra	akash Kharel	
1.	Introduction	47
2.	Methods	5
	2.1 Equipment	5
	2.2 Reagents and buffers	52
	2.3 Procedure	53
3.	Summary and conclusion	60
Re	ferences	6
	bozyme-mediated expression of tRNA-derived small RNAs in	65
ba Ca	bozyme-mediated expression of tRNA-derived small RNAs in Icteria rmela Esposito, Anamaria Buzoianu, Marina Cristodero, and rbert Polacek	65
ba Ca Nc	rteria rmela Esposito, Anamaria Buzoianu, Marina Cristodero, and	65
ba Ca Nc 1.	rteria rmela Esposito, Anamaria Buzoianu, Marina Cristodero, and rbert Polacek	
ba Ca Nc 1.	rteria rmela Esposito, Anamaria Buzoianu, Marina Cristodero, and rbert Polacek Introduction	66
ba Ca Nc 1.	rcteria rmela Esposito, Anamaria Buzoianu, Marina Cristodero, and rbert Polacek Introduction Materials	66 68 68
ba Ca Nc 1.	rrela Esposito, Anamaria Buzoianu, Marina Cristodero, and rbert Polacek Introduction Materials 2.1 Bacterial growth	60 61 61
ba Ca Nc 1.	rmela Esposito, Anamaria Buzoianu, Marina Cristodero, and rbert Polacek Introduction Materials 2.1 Bacterial growth 2.2 General cloning	60 68 68
ba Ca Nc 1.	rmela Esposito, Anamaria Buzoianu, Marina Cristodero, and rbert Polacek Introduction Materials 2.1 Bacterial growth 2.2 General cloning 2.3 RNA extraction	66 68 68 69
ba Ca Nc 1.	rrela Esposito, Anamaria Buzoianu, Marina Cristodero, and rbert Polacek Introduction Materials 2.1 Bacterial growth 2.2 General cloning 2.3 RNA extraction 2.4 Northern blot analysis	66 68 68 69 69
ba Ca Nc 1.	 Anteria Anamaria Buzoianu, Marina Cristodero, and arbert Polacek Introduction Materials 2.1 Bacterial growth 2.2 General cloning 2.3 RNA extraction 2.4 Northern blot analysis 2.5 Growth competition assay 	66
b a Ca Nc 1. 2.	 And the second second	66 68 68 69 69 69 70
b a Ca Nc 1. 2.	 And the second state of the state o	66 68 69 69 70 70

	4. Results and concluding remarks	78
	5. Limitations of the method	80
	Acknowledgments	81
	References	81
6.	Ribosome-associated tDRs in yeast	85
	Alessia Rosina, Norbert Polacek, and Robert Rauscher	
	1. Introduction	86
	2. Workflow for library preparation	88
	2.1 Yeast strains, cultivation, and harvesting	89
	2.2 Preparation of cell lysate	91
	2.3 Size exclusion chromatography and polysome profiling	92
	2.4 RNA extraction and separation on polyacrylamide gel	93
	2.5 RNase H, DNase I, and PNK treatments	95
	2.6 Library generation and deep sequencing	96
	3. Deep sequencing data analysis	96
	3.1 Bioinformatic analysis	96
	4. Validation of the pipeline results and confirmation of tDR rancRNA	98
	candidates	
	Acknowledgments	100
	References	100
7.	Analyzing, visualizing, and annotating tRNA-derived RNAs using tRAX and tDRnamer	103
	Patricia P. Chan, Andrew D. Holmes, and Todd M. Lowe	
	1. Introduction	104
	2. tDR expression and modification analysis using tRAX	106
	2.1 Requirements and installation	106
	2.2 Creating tRAX reference database	108
	2.3 Preprocessing raw sequencing data	108
	2.4 Analyzing sequencing data for expression and modification	110
	2.5 Understanding tRAX outputs	113
	3. Naming and annotating tDRs with tDRnamer	120
	3.1 Using the online version	121
	3.2 Using the standalone software	126
	4. Limitations	131
	5. Conclusion	131
	Acknowledgments	131
	References	131

8.	сP	-RNA-seq for tRNA half sequencing	135
	Me	egumi Shigematsu, Justin Gumas, and Yohei Kirino	
	1.	Introduction	136
	2.	Concept	138
		2.1 Overview of the protocol	138
		2.2 Application of the protocol	138
		2.3 Limitations	139
	3.	General method	141
	4.	Materials	141
		4.1 Equipment	141
		4.2 Reagents, consumables, and tools	141
	5.	Preparation of sncRNA fraction	143
		5.1 Gel purification	143
		5.2 Gel-free extraction	145
		5.3 Notes	145
	6.	Treatments of sncRNAs	146
		6.1 Removal of 5'- and 3'-P (CIP treatment)	146
		6.2 Cleavage of 3'-OH (periodate oxidation)	146
		6.3 Removal of cP and addition of 5'-P (T4 PNK treatment)	146
		6.4 Notes	146
	7.	cDNA amplification	147
		7.1 Adaptor ligations	147
		7.2 RT-PCR	147
		7.3 Determination of optimal PCR cycle numbers	148
		7.4 Final PCR and gel purification of cDNAs	148
		7.5 Notes	149
	8.	Summary and conclusions	150
	Ac	knowledgments	151
	Ref	ferences	151
9.	Та	qMan RT-qPCR for tRNA half quantification	155
	Me	egumi Shigematsu, Takuya Kawamura, and Yohei Kirino	
	1.	Introduction	156
	2.	Concept	157
		2.1 Overview of the protocol	157
		2.2 Application of the protocol	159
		2.3 Limitations	160
	3.	General method	161

4	Materials	161
	4.1 Equipment	161
	4.2 Reagents, consumables, and tools	161
1	Protocol	162
	5.1 T4 PNK treatment and AD ligation	162
	5.2 TaqMan RT-qPCR	162
	5.3 Notes	162
(Summary and conclusions	167
/	knowledgments	168
F	ferences	168
10		
10.	Discrimination between vesicular and nonvesicular extracellu RNAs and their fragments	lar 171
I	auricio Castellano, Marco Li Calzi, Maria Rosa Garcia,	
1	fonso Cayota, and Juan Pablo Tosar	
	Introduction	172
	Purification of vesicular and nonvesicular tRNA/tDRs by isopycnic	175
	centrifugation (iodixanol flotation gradients)	
	2.1 Materials	175
	2.2 Equipment	176
	2.3 Procedure	176
-	Purification of vesicular and nonvesicular tRNA/tDRs using	179
	commercial size-exclusion chromatography (SEC) columns	
	3.1 Materials	180
	3.2 Equipment	180
	3.3 Procedure	180
4	Conclusion	182
	knowledgments	182
(onflict of interest statement	183
F	ferences	183
11.	Methods for purification and characterization of nicked tRNA	s 187
	uno Costa, Valentina Blanco, Alfonso Cayota, and	
	an Pablo Tosar	
	Introduction	188
	Extraction of nicked tRNAs and separation by size exclusion	191
	chromatography (SEC)	
	2.1 Native extraction of RNAs from cells	191
	2.2 PROTOCOL 1: purification of nicked tRNAs by SEC	193

	2.3 Limitations of the method	196
3.	PROTOCOL 2: enzymatic repair of nicked tRNAs	196
	3.1 Nicked tRNA repair	198
4.	Conclusion	200
Ac	cknowledgments	200
Co	onflict of interest statement	201
Re	ferences	201
12.	In vitro functional analysis of plant tDRs	203
Cł	nristina Berrissou and Laurence Drouard	
1.	Introduction	204
2.	Materials	206
	2.1 General equipment	206
	2.2 General materials	207
3.	Methods	208
	3.1 Overview of plant tDR analysis	208
	3.2 Inhibition of <i>in vitro</i> translation by tDRs	209
	3.3 Total tRNA preparation	210
	3.4 Crude leaf enzymatic preparation	211
	3.5 In vitro tRNA cleavage assay and tDR purification	212
	3.6 In vitro protein synthesis assays	212
	3.7 Protein fractionation by denaturing polyacrylamide gel electrophoresis	213
	3.8 Subcellular localization and interactome of tDRs transfected into protoplasts	214
	3.9 General information regarding plants, and oligoribonucleotides	214
	3.10 Subcellular localization of fluorescently-labeled tDRs in protoplasts	215
	3.11 Localization and quantification of the foci	216
	3.12 Affinity pull-down of biotinylated tDRs and mass spectrometry analysis	217
	3.13 Nano LC/MSMS and statistical analysis	218
4.	Notes	218
Fu	Inding	219
Re	ferences	219

	TGIRT-seq to profile tRNA-derived RNAs and associated RNA modifications	223
	bigail Grace Johnston, Monima Anam, Anindya Dutta, and nangli Su	
1.	Introduction	224
2.	Before you begin	226
3.	Key resources table	227
4.	Materials and equipment	228
	4.1 Materials	228
	4.2 Equipment	229
5.	Step-by-step method details	229
	5.1 Overview	229
	5.2 Preparation of input RNA, synthetic RNA standard and dilution of adaptors	230
	5.3 Ligation to 3' end adaptor	230
	5.4 Hybridize the reverse transcription primer	231
	5.5 Ligation to 5' end adaptor	231
	5.6 cDNA synthesis by TGIRT and purification	232
	5.7 Optional Steps to optimize PCR cycle numbers used in 5.8	232
	5.8 PCR amplification and column purification	233
	5.9 Size selection and purification on 8 % PAGE gel	235
6.	Expected outcomes	237
7.	Advantages	237
	Limitations	238
9.	Alternative methods/procedures	238
Re	eferences	238
Ac	cknowledgments	238
f Fa	A general framework to over-express tRNA-derived fragmen from their parental tRNAs in mammalian cells atemeh Esmaeili, Kumarjeet Banerjee, Zhangli Su, and hindya Dutta	ts 241
1.	Introduction	242
2.	Before you begin	243
	2.1 Materials preparation	243
3.	Materials and equipment	244
	3.1 Materials	244
	3.2 Equipment	247

4.	Reci	pes	248
	4.1	Complete DMEM	248
	4.2	20X SSC buffer	248
	4.3	1 mg/mL PEI solution	248
5.	Met	hods	248
	5.1	Bioinformatics analysis to identify the tRNA gene that has to be	248
		overexpressed	
	5.2	Cutting the vector pcDNA3.1 to insert the tRNA gene	249
	5.3	tRNA gene amplification, infusion assembly of pcDNA3.1	249
		tRNACys and transformation	
	5.4	Transfection of HEK293T cells with tRNA overexpressing plasmid	250
		(pcDNA3.1 tRNA ^{Cys}) and control pcDNA3.1 EV	
	5.5	Detection of precursor and mature tRNA over-expression by qRT-PCR	251
	5.6	Detection of tRF-1 over-expression using northern blot	251
	5.7	Inserting the tRF-1 target site (reverse complementary sequence	255
		of the tRF) to the <i>renilla</i> luciferase reporter of psiCHECK-2	
		(leaving the 3'UTR of the firefly luciferase unchanged as internal control)	
	5.8	Detection of tRF-1 activity using dual luciferase reporter assays	255
6.	Expe	ected outcomes	257
7.	Con	clusion and future perspective	257
Ac	know	ledgments	257
Dis	sclosu	ire	258
Re	feren	ces	258
		tional characterization of tRNA-derived small in stem cells	261
		arya Muthukumar, Silvia Tucciarone, Ire André Germanos, and Cristian Bellodi	
1.	Intro	oduction	262
2.	Met	hods	265
	2.1	Assessment of tDR-mediated effects on global protein synthesis	265
	2.2	Transfection of tDRs	265
	2.3	Measurement of global protein synthesis by ³⁵ S-methionine/	267
		cysteine incorporation in cells	
	2.4	Measurement of protein synthesis by puromycin incorporation	269
	2.5	O-propargyl-puromycin (OPP) incorporation	270

3.	Assessment of tDR-mediated effects on stem cell proliferation and differentiation	271
	3.1 Colony forming assay (CFU-assay)	271
	3.2 tDR-mediated differentiation of HSPCs (CD34+) cells in liquid culture	273
	3.3 Xenotransplantation of human stem cells following tDR treatment	276
4.	Conclusions	280
Ref	rences	281
	etection of mitochondrial tDRs in killifish embryos and her non-model organisms	283
	re L. Riggs, Gazal Kalyan, Amie LT Romney, and on E. Podrabsky	
1.	ntroduction	284
	1.1 mito-tDR induction	286
2.	Methodology and protocols	286
	2.1 Total RNA extraction	288
	2.2 cDNA library preparation and RNA-sequencing	292
	2.3 cDNA library reagents	293
	2.4 Bioinformatics	293
	2.5 Wet-lab validation	299
Ref	rences	308
O S	oinformatics of simultaneous, quantitative measurements full-length tRNA and tRNA fragments by MSR quencing	313
Lul	e R. Frietze and Tao Pan	
1.	ntroduction	313
2.	Method	316
Acl	nowledgments	322
Ref	rences	322
	lf-quenched tRNA reporters for imaging tRNA-derived RN. ogenesis	A 325
Gu	ping Li and Saumya Das	
1.	ntroduction	326
	Vaterials	328
	2.1 Cell culture	328
		520

	2.2	Transfection	328
	2.3	Imaging and analysis	329
3.	Met	hods	329
	3.1	Design and synthesis of tDR biogenesis reporter	329
	3.2	Transfection of reporter into target cells	331
	3.3	Imaging and analysis	331
4.	Not	25	332
5.	Disc	ussion	334
Re	feren	ces	335
		tional analysis of tRNA-derived small translational ation	337
Do	ongjir	n Kim, Hak Kyun Kim, and Mark A. Kay	
1.	Intro	oduction	338
2.	Mat	erials	339
	2.1	Transfection of anti-LeuCAG3'tsRNA LNA	339
	2.2	Sucrose gradient for polysome analysis	340
	2.3	Northern hybridization using PNK labeled probe	340
	2.4	Western blotting	341
	2.5	Northern hybridization from sucrose gradient fractionation	341
	2.6	Prediction of tDR target site using RNA hybrid software	342
	2.7	Prediction of RPS28 mRNA secondary structure using RNAfold	342
	2.8	Overexpression of RPS28 mRNA target site mutant in tDR	342
		knockdown cells	
3.	Met	hods	342
	3.1	Overview	342
	3.2	Inhibition of LeuCAG3'tsRNA	343
	3.3	Analysis of polysome and ribosomal subunits	344
	3.4	Analysis of 18S rRNA processing pathway by	348
		northern hybridization	
	3.5	Identification of RPS proteins related to 18S rRNA	350
		processing pathway	
	3.6	Determination of tDR-mediated regulation of RPS28	351
		mRNA translation	
		Prediction of tDR target site	353
		Prediction of target mRNA secondary structure	353
	3.9	Determination of tDR-mediated regulation of secondary	354
		structure of target sites	

	4.	Notes	355
	5.	Conclusion	355
	Acł	knowledgments	355
l	Ref	ferences	355
20.		Determining small RNA-interacting proteomes using ndogenously modified tRNA-derived RNAs	357
,	Vei	ra Oberbauer, Aleksej Drino, and Matthias R. Schaefer	
	1.	Introduction	357
		1.1 The rationale for including RNA modifications in tDR interaction approaches	360
	2.	General method	361
		2.1 Equipment	362
		2.2 Reagents and buffers	362
		2.3 Procedure	364
	3.	Considerations/limitations when capturing tDR-interacting	375
		proteomes	
	Acł	knowledgments	377
	Ref	ferences	377
21.	. A	ssay for ribosome stimulation of angiogenin nuclease activity	383
l	Em	ily Sholi, Anna B. Loveland, and Andrei A. Korostelev	
	1.	Introduction	384
	2.	Method	386
		2.1 Ribosome-stimulated angiogenin nuclease assay (RiSANA)	386
		2.2 Purification of crude ribosomes from RRL	390
		2.3 Purification of ribosomal 40S and 60S subunits from RRL	391
	3.	Conclusions and future outlook	399
	Acł	knowledgements	401
	Coi	nflict of interest statement	401
	Ref	erences	401